Závěrečná zpráva projektu CHIC o komercializaci palivočlánkových autobusů
Evropský projekt palivočlánkových autobusů CHIC (Clean Hydrogen in European Cities) průběžně sledujeme na našem portále i ve studii E-mobilita v MHD. Tento projekt probíhal v letech 2010 – 2016. Během této doby byly získány zkušenosti z provozu více než 50 palivočlánkových autobusů v osmi městech a regionech Evropy a Kanady. Na konci listopadu 2016 byla zveřejněna jeho závěrečná souhrnná zpráva. Z ní jsou dále uvedeny některé zajímavé informace, podle potřeby doplněné o další poznatky našeho portálu z palivočlánkové elektromobility.
Počet, výrobce a technické parametry palivočlánkových autobusů nasazených v rámci projektu CHIC shrnuje tabulka:
Zpráva z projektu pro úplnost uvádí i některé informace z Berlína. Zde se v letech 2006 – 2014 zkoušely 12m autobusy MAN s plynovým spalovacím motorem používajícím vodík – tedy „vodíkové“, ale nikoli palivočlánkové autobusy (Poznámka: pojmy „vodíkový“ a „palivočlánkový“ proto na našem portále rozlišujeme). Návazně jsou nyní v Berlíně testovány bateriové elektrobusy s indukčním nabíjením.
Projekt CHIC ukázal, že palivočlánkový autobus již dávno není experimentálním zařízením, nýbrž dopravním prostředkem spějícím ke komercializaci. Tento dopravní prostředek v sobě spojuje bezemisní provoz s provozními parametry odpovídajícími autobusům se spalovacími motory. Je to především dojezd na jedno naplnění nádrže přesahující 350 km a doba tankování méně než 10 minut – typicky 6 až 8 minut pro průměrný tankovaný objem 17 kg vodíku.
Nasazené palivočlánkové autobusy ukázaly velkou energetickou efektivnost: Průměrná spotřeba vodíku u 12m vozidla se pohybovala kolem 9 l/100 km, což energeticky odpovídá cca 30 l nafty, při bezemisním provozu. Vůbec nejnižší spotřeba v rámci projektu CHIC – 7,9 kg/100 km – byla naměřena u palivočlánkových autobusů ve švýcarském Aargau. Tato hodnota prakticky odpovídá spotřebě českého palivočlánkového autobusu TriHyBus (blíže viz zmíněná studie E-mobilita v MHD), která činí v průměru 7,75 kg/100 km.
Pro srovnání, průměrná spotřeba vodíku u výše uvedených berlínských vodíkových autobusů s plynovým spalovacím motorem činila 22,8 kg/km, tedy více než 2,5násobek průměrné spotřeby 12m palivočlánkového autobusu. To ukazuje rozdíl v energetické účinnosti spalovacího motoru a elektropohonu u srovnatelných vozidel se stejným palivem jako primárním zdrojem energie pro pohon.
Zdroje vodíku v rámci projektu byly rozmanité. Největší park palivočlánkových autobusů v kanadském Whistleru (20 vozidel) například používal elektrolýzu energií z místní vodní elektrárny. Obnovitelé zdroje v kombinaci s elektrolýzou používaly i autobusy v Oslo, v italském Bolzanu (viz foto autobusu výše) a v kombinaci s dalšími zdroji také v Aargau, Miláně nebo Hamburku. Dalšími zdroji vodíku byla jeho běžná průmyslová výroba parním reformováním (podrobnosti lze opět nalézt ve studii E-mobilita v MHD), kde se vzniklý oxid uhličitý pak často dále používá například pro chlazení, nebo byl využit vodík jako odpadní produkt z chemické výroby.
Palivočlánkové autobusy v rámci projektu CHIC najely dohromady přes 9 miliónů km a v provozu byly kolem půl miliónu provozních hodin. Některé konkrétní palivočlánkové pohony byly v provozu přes 20 tisíc hodin a slouží dále. Průměrná denní doba provozu palivočlánkového autobusu byla 20 hodin, přičemž bylo najeto přes 350 km.
Vzhledem k tomu, že nešlo o ozkoušená sériová vozidla, bylo nutno počítat i s dětskými nemocemi, jakým se v podobných případech nelze vyhnout. Provozní spolehlivost autobusů, vyjádřená jejich disponibilitou, se nicméně během trvání projektu postupně zlepšovala. Na konci projektu činila disponibilita některých autobusů 90 % a disponibilita celého parku se těsně přiblížila cílové úrovni 85 %.
Hlavní příčinou nedisponibility byla prodlení v diagnóze případných poruch a v dodavatelských řetězcích při jejich odstraňování. Podobnou zkušenost ostatně zaznamenal i výše zmíněný český projekt TriHyBus. Z pohledu technologie samotné přitom nevidí zúčastnění dopravci důvod, proč by palivočlánkové autobusy neměly dosáhnout stejné úrovně spolehlivosti jako dieselová vozidla.
Důležitým krokem k tomu by měl být postupný přechod údržby, prozatím prováděné specializovanými techniky výrobců, do opravárenské základny dopravců. K tomu je třeba přizpůsobit vybavení dílen a příslušně vyškolit personál.
Přitom je pamatováno na bezpečnost provozu: Vodík je ve směsi se vzduchem výbušný, ale také extrémně lehký. Při úniku do volného prostoru (například při nehodě vozidla) se tedy nestane prakticky nic, protože vodík se rozptýlí v atmosféře dříve, než by stačil explodovat. Problémem by však mohly být drobné úniky vodíku vytvářející „vodíkové kapsy“ v uzavřených prostorách. Tomu je třeba předcházet pomocí příslušných bezpečnostních technologií (senzorů apod.).
Vodíkové plnicí stanice v rámci projektu CHIC dosahovaly průměrné disponibility 97 %, některé i více než 99 % a nikdy ne méně než 94 %. Hlavní příčinou případné odstávky byly vodíkové kompresory.
Většina měst a dopravců zúčastněných na projektu počítá i po ukončení projektu CHIC s dalším provozem palivočlánkových autobusů, případně dalších bezemisních vozidel, pro nějž jsou zkušenosti z tohoto projektu významnou motivací.
Kolín nad Rýnem například plánuje rozšířit park autobusů MHD o dalších 30 palivočlánkových autobusů. Města Berlín a Hamburk podepsaly společný dopis, podle nějž po roce 2020 plánují obě města dohromady pořídit 200 bezemisních autobusů. V Londýně vznikne v roce 2019 tzv. Ultra-Low Emission Zone (ULEZ), tedy ultra-nízkoemisní zóna, v níž všechny jednopodlažní autobusy musí být zcela bezemisní a dvoupodlažní autobusy používat hybridní pohon s dieselem Euro VI. Další rozvoj palivočlánkových ausobusů je i součásti smart city Oslo, a následně strategie tamního organizátora veřejné dopravy Ruter.
Z celoevropského pohledu nyní bude třeba, aby palivočlánkové autobusy dosáhly takové ekonomie z rozsahu, která pomůže významně snížit jejich náklady. K tomu je zaměřena i příslušná strategie Společného podniku pro palivové články a vodík (FCH JU) v oblasti palivočlánkových autobusů.
Nelze zapomenout ani na potřebnou standardizaci v oblasti vodíkové plnicí infrastruktury. V neposlední řadě je pak nezbytná setrvalá osvěta a vzdělávání, ať již lidí přímo zapojených do provozování a údržby palivočlánkových autobusů a jejich infrastruktury nebo široké veřejnosti, politických a nevládních organizací a dalších zainteresovaných subjektů.
Reklama na BusPressu – Klíč k nejlepším obchodům
DEKRA, ŠKOLA SMYKU – WWW.DEKRA.CZ
WWW.MESTSKADOPRAVA.INFO
CZECHBUS, VELETRH AUTOBUSŮ V PRAZE – WWW.CZECHBUS.EU
Veletrh autobusů, výstava autobusů, autobusy v Praze
TURANCAR CZ, PRODEJ AUTOBUSŮ ISUZU – WWW.ISUZUBUS.CZ
Autobusy ISUZU, ISUZU, ISUZU servis, ISUZU díly, ISUZU TURANCAR
ProScan – prodej a servis ISUZU – WWW.ISUZUTRUCK.EU
ISUZU prodej, ISUZU díly, ISUZU nákladní, ISUZU D -MAX
KHMC OPAVA, VÝROBA AUTOBUSŮ – WWW.KHMC.CZ
ANVI TRADE, PODDLAHOVÉ MATERIÁLY VE VEŘEJNÉ DOPRAVĚ – WWW.ANVITRADE.CZ
,